Устройство хранения информации в компьютере: Устройства хранения информации — Устройство персонального компьютера

Устройства хранения информации — Устройство персонального компьютера

Жесткие диски и их интерфейсы

Жесткий диск, или винчестер, — основное средство хранения информации в компьютере. Современные жесткие диски отличаются высокими показателями емкости (сотни и даже тысячи гигабайт), скорости и надежности, а также не очень высокой стоимостью. На них обычно хранится операционная система, прикладные программы и обрабатываемые данные. Кроме того, здесь можно хранить большое количество рисунков, музыки, видео и другой объемной информации.

В современных компьютерах можно встретить жесткие диски с тремя различными интерфейсами подключения.

IDE, или ATA. Согласно этому интерфейсу жесткие диски подключаются к контроллеру с помощью 40- или 80-жильного шлейфа. К одному шлейфу можно подключить сразу два устройства, но для этого нужно верно выставить перемычки па накопителе и проверить параметры этого накопителя в BIOS.

Serial ATA, или SATA. Этот интерфейс имеет более высокую скорость, чем ATA, и поддерживается всеми современными системными платами. В отличие от IDE, данные передаются последовательно lio семижильному кабелю, а накопители конфпгур 11 ру ются автоматически.

SCSI. Производительный параллельный интерфейс, обычно применяющийся в серверных системах. Системные платы со встроенной поддержкой SCSI встречаются очень редко, поэтому для подключения SCSI-дисков обычно приходится устанавливать дополнительный SCSI-контроллер. В некоторых новых системах встречается последовательный вариант интерфейса SCSI — SAS (Serial Attached SCSI).

Дискеты

Хотя дискеты считаются устаревшим средством хранения информации, их использование иногда оказывается оправданным, а в некоторых случаях — даже необходимым. Например, дискеты могут использоваться для обновления или восстановления BIOS, а на некоторых системных платах обновление или восстановление с дискет является единственно возможным способом.

Дисковод для дискет устанавливается в соответствующую нишу системного блока и подключается к контроллеру па системной плате с помощью шлейфа, а к блоку питания с помощью четырехжилыгаго кабеля.

Устройства хранения информации в компьютере

В любом компьютере обязательно есть устройства, которые хранят информацию. Устройства хранения информации в компьютере разделяются на оперативную память (память, которая нужна для хранения промежуточных результатов вычислений) и долговременную — здесь хранятся файлы (определение довольно грубое но,суть отражает верно).

В оперативной памяти компьютера любая информация хранится только до выключения компьютера. Если вам нужно сохранить документ и вернуться к работе над ним завтра, его нужно записать на долговременное устройство хранения, обычно – на диск. Вот самые распространенные типы дисков и устройств хранения.

1. Дискеты: 3,5-дюймовые дискеты емкостью 1,44 Мбайт когда-то были «вездесущим» средством хранения информации, но сейчас они безнадежно устарели. Можете считать, что дисковод для них в вашем компьютере необязателен. Вот так она выглядела.

2. Карты памяти SD/xD/MS: даже сейчас, после ухода дискет со сцены, во многих корпусах компьютеров есть отсек, предназначенный для установки дисководов. Почему бы не установить в этот отсек считыватель для карт памяти? С помощью этого считывателя вы можете считывать данные с карт памяти для фотоаппаратов (и записывать тоже). Устройства для работы с картами памяти (кардридеры -дословно «читатель карт») стоят очень недорого, и обычные кардридеры позволят работать со множеством разных карт – SD, xD, CF, Memory Stick и т.д.

3. Жесткие диски, или винчестеры: купите самый емкий жесткий диск, какой сможете себе позволить. Цифровые фотографии всегда занимают больше места, чем вы рассчитывали, а музыкальная коллекция вашего сына наверняка занимает больше, чем весь архив ЦРУ. Хотя в целом считается, что более дорогие жесткие диски надежнее дешевых, индивидуальные результаты бывают разными, и трудно утверждать что-то наверняка.

Быстродействие, т.е. скорость, с которой жесткий диск записывает и считывает данные, менее важно, чем емкость. Быстродействие станет более важным, если вы будете регулярно работать с большими объемами данных, например с видеозаписями. Однако стоит подумать о том, чтобы за несколько дополнительных долларов купить винчестер с новым интерфейсом SATA этот интерфейс быстро приходит на смену устаревшему и более медленному IDE (также известному как ATA или PATA). Кроме того, кабели SATA уже и гибче, чем широкие и неудобные кабели IDE.
Также обратите внимание на внешние жесткие диски, которые обычно подключаются к компьютеру через USB-кабель(внешние жесткие диски). Они работают почти так же быстро, как внутренние жесткие диски, и их можно подключать к компьютеру и отключать по мере необходимости. Кроме того, они не вносят своего вклада в нагрев, что находится в корпусе компьютера.
Если вы покупаете новый винчестер, пусть его установит в компьютер продавец. При установке жесткого диска нужно обращать внимание на ряд мелочей, малопонятных неспециалисту.
4. Приводы CD и DVD: эти приводы позволяют читать и записывать диски с различной информацией (от текстовых документов до музыки и видео) на обычные компакт-диски (CD) помещается порядка 700 Мбайт данных; на DVD помещается порядка 4,5 Гбайт, а на двухслойные DVD – около 8 Гбайт. Не жадничайте – купите себе привод, поддерживающий двухслойные DVD (DVD+RW DL), даже если двухслойные диски дорого стоят. Если вы не знаете, как установить этот привод, купите себе внешний USB-вариант – Windows отлично работает с такими приводами.

Многие старые CD-проигрыватели (например, в музыкальных центрах или автомагнитолах) не могут читать перезаписываемые диски (CD-RW). Для таких приводов нужны однократно записываемые CD (CD-RW).
Если вы хотите записывать на новом компьютере диски CD или DVD и затем проиграть их на устройствах, которые у вас уже есть, лучше перед покупкой запишите тестовый диск и проверьте, будет ли он нормально воспроизводится. Многие дешевые DVD-проигрыватели запросто могут работать с дисками, целиком заполненными MP3-музыкой. Однако есть модели, и среди дорогих – которые не воспринимают такие диски совсем. Единственный способ проверить возможности вашего проигрывателя — провести эксперимент.
5. USB флеш-накопители: замечательные вещи! Размером с пачку жевательной резинки и при этом способны вместить море данных. Существуют флеш-накопители емкостью 16 Гбайт и более – это несколько DVD-дисков. Кроме того, эти устройства не боятся ударов и магнитных полей, а возможность подключения через порт USB означает минимум возни с ними при переносе данных между разными компьютерами. Windows обнаруживает такой накопитель сразу после его подключения к порту USB. Выбирая такой флеш-накопитель определенного объема, берите самый дешевый: в более дорогих моделях того же объема обычно добавляются малоиспользуемые возможности.

Приведенный выше список отнюдь не является исчерпывающим – существует множество более экзотических устройств хранения информации: магнитооптические, ленточные накопители и т.д.

Похожие статьи:

Запись имеет метки: Железо

Что такое компьютерное устройство хранения данных?

Компьютеры используют различные устройства хранения данных, которые разделяются по двум признакам: 1) сохраняются ли на них данные при отключении электропитания; 2) насколько далеко они находятся от процессора (ЦП). Оба типа хранилищ должны быть на всех компьютерах. В персональном компьютере память не сохраняет данные, когда электричество выключается, но, когда оно включается, память обеспечивает быстрый доступ к открытым файлам. Однако накопитель позволяет постоянно хранить данные, поэтому он доступен всегда при включении компьютера.

Энергозависимое и энергонезависимое хранилище

По первой классификации хранилища компьютерных данных делятся на энергозависимые и энергонезависимые хранилища. Примером энергозависимого хранилища является память (ОЗУ), которая хранит данные только до тех пор, пока на устройство подается электроэнергия. ОЗУ позволяет вашему компьютеру держать несколько файлов открытыми и мгновенно переключаться между ними. Еще один пример энергозависимых устройств хранения данных — это калькуляторы.

Энергонезависимое хранилище — это хранилище, которое сохраняет данные даже после отключения электричества, питающего устройство. Примером может служить жесткий диск (HDD) или твердотельный накопитель (SSD), который содержит все данные, сохраненные на вашем компьютере. Существуют и другие энергонезависимые хранилища, такие как DVD-диски или флеш-накопители. Подробнее о различиях между памятью и хранилищем читайте здесь.

Иерархия хранилищ

Устройства хранения компьютерных данных также классифицируются по тому, насколько они удалены от процессора или ЦП. Ближайшим хранилищем является оперативная память или ОЗУ. Это единственный вид хранилища данных, который напрямую обращается к ЦП. Память включает регистры процессора и кэш процессора, но они включены в модуль памяти.

Память — это энергозависимое хранилище, поэтому любая информация, которая поступает в память, должна быть записана на основное запоминающее устройство для долгосрочного хранения. Поскольку данные передаются из памяти на устройство хранения, оно считается вторичным хранилищем.

Для большинства персональных компьютеров основным устройством хранения данных является вторичное хранилище. На жестком диске или твердотельном диске хранятся все данные: файлы, фотографии, программы, музыка и фильмы, которые пользователь хочет сохранить. Съемные внешние устройства хранения данных, такие как флеш-накопители, CD и DVD-диски для чтения и записи, также являются вторичными хранилищами. Однако компьютер не может работать без накопителя. Накопитель также содержит всю информацию, которая необходима для запуска компьютера.

Третичное хранилище — это компьютерное хранилище данных, которое использует съемные носители, такие как ленточный накопитель, и робота для извлечения данных. Такой тип редко используется в персональных ПК.

Вывод

В общем случае жесткий диск или твердотельный накопитель обычно называют накопителем. Поскольку память энергозависима, ее трудно назвать устройством хранения. А так как персональные компьютеры редко используют третичные хранилища, накопитель является основным и часто единственным энергонезависимым устройством хранения данных на компьютере. Узнайте подробнее о различиях между жесткими дисками и твердотельными накопителями.

Устройство хранения информации — это… Что такое Устройство хранения информации?

Electrically Erasable Programmable Read-Only Memory, англ. flash memory), отличающиеся высокой скоростью доступа и возможностью быстрого стирания данных

По энергозависимости

Энергонезависимая память (англ. nonvolatile storage) — ЗУ, записи в которых не стираются при снятии электропитания. К этому типу памяти относятся все виды ПЗУ и ППЗУ.

Энергозависимая память (англ. volatile storage) — ЗУ, записи в которых стираются при снятии электропитания. К этому типу памяти относится ОЗУ, кэш-память.

(англ. dynamic storage) — разновидность энергозависимой полупроводниковой памяти, в которой хранимая информация с течением времени разрушается, поэтому для сохранения записей необходимо производить их периодическое восстановление (регенерацию), которое выполняется под управлением специальных внешних схемных элементов.

(англ. static storage) — разновидность энергозависимой полупроводниковой памяти, которой для хранения информации достаточно сохранения питающего напряжения, а регенерация не требуется.

По виду физического носителя и принципа рЕМА

Некоторые виды памяти могут носить сразу два и более «родовых» наименования по принципу работы.

Акустическая память (англ. acoustic storage) — в качестве среды для записи и хранения данных используются замкнутые акустические линии задержки.

Голографическая память (англ. holographic storage) — в качестве среды для записи и хранения используется пространственная графическая информация, отображаемая в виде интерференционных структур.

Емкостная память (англ. capacitor storage) — вид ЗУ, использующий в качестве среды для записи и хранения данных элементы электрической цепи — конденсаторы.

Криогенная память (англ. cryogenic storage) — в качестве среды для записи и хранения данных используются материалы, обладающие сверхпроводимостью.

Лазерная память (англ. laser storage) — вид памяти, в котором запись и считывание данных производятся лучом лазера (CD-R/RW, DVD+R/RW, DVD-RAM).

Магнитная память (англ. magnetic storage) — вид памяти, использующий в качестве среды для записи и хранения данных магнитный материал. Наиболее широко использующимися устройствами реализации магнитной памяти в современных ЭВМ являются накопители на магнитных лентах (НМЛ), магнитных (жестких и гибких) дисках (НЖМД и НГМД). Некоторые разновидности имеют собственные наименования:

  • Память на магнитной проволоке (англ. plated wire memory) — на ней строится автоматика авиационных «чёрных ящиков» благодаря высокой сохранности даже повреждённого носителя при аварийных ситуациях.
  • Память на магнитной пленке (англ. thin-film memory), наносимой на некоторую подложку, например стеклянную.
  • Ферритовая память (англ. core storage) — на ферритовых сердечниках, через которые пропущены тонкие медные проводники.
  • Память на цилиндрических магнитных доменах — использует генерацию и управляемое перемещение в неподвижном магнитном материале областей намагниченности (доменов). Имеет последовательный доступ, энергонезависима. Долгое время сохраняла лидерство в плотности хранения информации среди энергонезависимых устройств.
  • Магнитооптическая память (англ. magnetooptics storage) — вид памяти, использующий магнитный материал, запись данных на который возможна только при нагреве до температуры Кюри (порядка 1450 °C), осуществляемом в точке записи лучом лазера (объём записи на стандартные 3,5 и 5,25 дюймовые гибкие диски составляет при этом соответственно до 600 Мб и 1,3 Гб, существовали и MO диски меньшего объёма). В 2002 году компания Fujitsu выпустила магнитооптические накопители DynaMO 2300U2 и дискеты к ним (стандартный размер дискет — 3,5 дюйма) ёмкостью 2,3 Гбайт.
  • Сегнетоэлектрическая память англ. Ferroelectric RAM) — статическая оперативная память с произвольным доступом, ячейки которой сохраняют информацию, используя сегнетоэлектрический эффект («ferroelectric» переводится «сегнетоэлектрик, сегнетоэлектрический», а не «ферромагнетик», как можно подумать). Ячейка памяти представляет собой две токопроводящие обкладки, и плёнку из сегнетоэлектрического материала. В центре сегнетоэлектрического кристалла имеется подвижный атом. Приложение электрического поля заставляет его перемещаться. В случае, если поле «пытается» переместить атом в положение, например, соответствующее логическому нулю, а он в нём уже находится, через сегнетоэлектрический конденсатор проходит меньший заряд, чем в случае переключения ячейки. На измерении проходящего через ячейку заряда и основано считывание. При этом процессе ячейки перезаписываются, и информация теряется(требуется регенерация). Исследованиями в этом направлении занимаются фирмы Hitachi совместно с Ramtron, Matsushita с фирмой Symetrix. По сравнению с флеш-памятью, ячейки FRAM практически не деградируют — гарантируется до 1010 циклов перезаписи.

Молекулярная память (англ. molecular storage) — вид памяти, использующей технологию атомной тунельной микроскопии, в соответствии с которой запись и считывание данных производится на молекулярном уровне. Носителями информации являются специальные виды плёнок. Головки, считывающие данные, сканируют поверхность плёнки. Их чувствительность позволяет определять наличие или отсутствие в молекулах отдельных атомов, на чём и основан принцип записи-считывания данных. В середине 1999 года эта технология была продемонстрирована компанией Nanochip. В основе архитектуры устройств записи-считывания лежит технология MARE (Molecular Array Read-Write Engine). Достигнуты следующие показатели по плотности упаковки: ~40 Гбит/см² в устройствах чтения/записи и 128 Гбит/см² в устройствах с однократной записью, что считается в 6 раз выше, чем у экспериментальных образцов, которые основаны на классической технологии магнитной записи, и более чем в 25 раз превосходит лучшие её образцы, находящиеся в серийном производстве. Однако текущие (2008 год) достижения в скорости записи и считывания информации таким способом не позволяют говорить о массовом применении этой технологии.

Полупроводниковая память (англ. semiconductor storage) — вид памяти, использующий в качестве средств записи и хранения данных микроэлектронные интегральные схемы (БИС и СБИС). Преимущественное применение этот вид памяти получил в ПЗУ и ОЗУ ЭВМ, поскольку он характеризуется высоким быстродействием. Сравнительно недавно объём памяти, реализуемой на одной твердотельной (полупроводниковой) плате, ограничивался единицами Мбайт. Однако в настоящее время (2008 год) технологические достижения позволяют говорить о массовом использовании памяти в единицы и десятки гигабайт, а также о применении полупроводниковой памяти в качестве внешних носителей.

  • Исторически первыми были устройства, в которых состояние сохранялось в триггере — комбинации из двух и более транзисторов или, ранее, электронных ламп.
  • В дальнейшем большей плотности хранения при большем быстродействии достигли устройства емкостной памяти.

Фазоинверсная память (англ. Phase Change Rewritable storage, PCR) — разновидность лазерной (дисковой) памяти, использующей свойства некоторых полимерных материалов в точке лазерного нагрева в зависимости от температуры изменять фазовое состояние вещества (в частности кристаллизоваться или плавиться с возвращением в исходное состояние), а вместе с ним — и характеристики отражения. Указанная технология позволяет создавать оптические диски (650 Мб) для многократной перезаписи данных. Разработкой данной технологии занимается ряд компаний, включая Panasonic и Toshiba. Дальнейшее развитие этих принципов привело к развитию DVD, Blue-Ray технологий.

Электростатическая память (англ. electrostatic storage) — вид памяти, в котором носителями данных являются накопленные заряды статического электричества на поверхности диэлектрика.

По назначению, организации памяти и-или доступа

Автономное ЗУ (англ. off-line storage) — вид памяти, не допускающий прямого доступа к ней со стороны центрального процессора: обращение к ней, а также управление ею производится вводом в систему специальных команд и через посредство оперативной памяти.

Адресуемая память (англ. addressed memory) — вид памяти, к которой может непосредственно обращаться центральный процессор.

Ассоциативное ЗУ, АЗУ (англ. associative memory, content-addressable memory, CAM) — вид памяти, в котором адресация осуществляется на основе содержания данных, а не их местоположения, чем обеспечивается ускорение поиска необходимых записей. С указанной целью поиск в ассоциативной памяти производится на основе определения содержания в той или иной её области (ячейке памяти) слова, словосочетания, символа и т. п., являющихся поисковым признаком.

Существуют различные методы реализации АЗУ, в том числе использующие методы поиска основанные на «точном совпадении», «близком совпадении», «маскировании» слова-признака и т. д., а также различные процедуры реализации поиска, например, кэширования с целью производства «наилучшей оценки» истинного адреса, за которой следует проверка содержимого ячейки с вычисленным адресом. Некоторые ассоциативные ЗУ строятся по принципу последовательного, другие — параллельного сравнения признаков поиска (так называемые ортогональные ЗУ). Параллельные ассоциативные ЗУ нашли применение в организации кэш-памяти и виртуальной памяти. Ассоциативные ЗУ, потенциально, являются базой для построения высокоэффективных Лисп-процессоров и систем.

Буферное ЗУ (англ. buffer storage) — вид ЗУ, предназначенный для временного хранения данных при обмене ими между различными устройствами ЭВМ

Виртуальная память (англ. virtual memory):

  • Способ организации памяти, в соответствии с которым часть внешней памяти ЭВМ используется для расширения её «внутренней» (основной, оперативной) памяти. Например, содержимое некоторой области, не используемой в данный момент времени «внутренней» памяти, хранится на жёстком диске и возвращается в оперативную память по мере необходимости.
  • Область (пространство) памяти, предоставляемая отдельному пользователю или группе пользователей и состоящая из основной и внешней памяти ЭВМ, между которыми организован так называемый постраничный обмен данными. С указанной целью всё адресное пространство делится на страницы памяти. Поиск адресов страниц производится в ассоциативной памяти.

Временная память (англ. temporary storage) — специальное запоминающее устройство или часть оперативной памяти или внешней памяти, резервируемые для хранения промежуточных результатов обработки.

Вспомогательная память (англ. auxiliary storage) — часть памяти ЭВМ, охватывающая внешнюю и наращенную оперативную память.

Вторичная память (англ. secondary storage) — вид памяти, который в отличие от основной памяти имеет большее время доступа, основывается на блочном обмене, характеризуется большим объёмом и служит для разгрузки основной памяти.

Гибкая память (англ. elastic storage) — вид памяти, позволяющей хранить переменное число данных, пересылать (выдавать) их в той же последовательности, в которой принимает, и варьировать скорость вывода.

Дополнительная память (англ. add-in memory) — вид устройства памяти, предназначенного для увеличения объёма основной оперативной или внешней памяти на жёстком магнитном диске (ЖМД), входящих в основной комплект поставки ЭВМ.

Иерархическая память (англ. hierarchical storage) — вид памяти, имеющей иерархическую структуру, на верхнем уровне которой используется сверхоперативное запоминающее устройство, а на нижнем уровне — архивное ЗУ сверхбольшой ёмкости.

Кеш-память (англ. cache memory) — часть архитектуры устройства или программного обеспечения, осуществляющая хранение часто используемых данных для предоставления их в более быстрый доступ, нежели кешируемая память.

Коллективная память, память коллективного доступа (англ. shared memory):

  • Память, доступная множеству пользователей, которые могут обращаться к ней одновременно или последовательно.
  • Память, связанная одновременно с несколькими процессорами для обеспечения их взаимодействия при совместно решаемых ими задачах и использовании общих для них программных средств.

Корректирующая память (англ. patch memory) — часть памяти ЭВМ, предназначенная для хранения адресов неисправных ячеек основной памяти. Также используются термины «relocation table» и «remap table».

Локальная память (англ. local memory) — «внутренняя» память отдельного устройства ЭВМ (процессора, канала и т. п.), предназначенная для хранения управляющих этим устройством команд, а также сведений о состоянии устройства.

Магазинная (стековая) память (англ. pushdown storage) — вид памяти, являющийся аппаратной реализацией магазинного списка — стека, запись и считывание в котором осуществляются через одну и ту же ячейку — вершину стека. Это память абстрактного типа.

Матричная память (англ. matrix storage) — вид памяти, элементы (ячейки) которой имеют такое расположение, что доступ к ним осуществляется по двум или более координатам.

Многоблочная память (англ. multibunk memory) — вид оперативной памяти, организованной из нескольких независимых блоков, допускающих одновременное обращение к ним, что повышает её пропускную способность. Часто употребляется термин «интерлив» (калька с англ. interleave — перемежать) и может встречаться в документации некоторых фирм «многоканальная память» (англ. Multichanel).

Многовходовая память (англ. multiport storage memory) — устройство памяти, допускающее независимое обращение с нескольких направлений (входов), причём обслуживание запросов производится в порядке их приоритета.

Многоуровневая память (англ. multilevel memory) — организация памяти, состоящая из нескольких уровней запоминающих устройств с различными характеристиками и рассматриваемая со стороны пользователей как единое целое. Для многоуровневой памяти характерна страничная организация, обеспечивающая «прозрачность» обмена данными между ЗУ разных уровней.

Непосредственно управляемая (оперативно доступная) память (англ. on-line storage) — память, непосредственно доступная в данный момент времени центральному процессору.

Объектно-ориентированная память (англ. object storage) — память, система управления которой ориентирована на хранение объектов. При этом каждый объект характеризуется типом и размером записи.

Оверлейная память (англ. overlayable storage) — вид памяти с перекрытием вызываемых в разное время программных модулей.

Память параллельного действия (англ. parallel storage) — вид памяти, в которой все области поиска могут быть доступны одновременно.

Перезагружаемая управляющая память (англ. reloadable control storage) — вид памяти, предназначенный для хранения микропрограмм управления и допускающий многократную смену содержимого — автоматически или под управлением оператора ЭВМ.

Перемещаемая память (англ. data-carrier storage) — вид архивной памяти, в которой данные хранятся на перемещаемом носителе. Непосредственный доступ к ним от ЭВМ отсутствует.

Память последовательного действия (англ. sequential storage) — вид памяти, в которой данные записываются и выбираются последовательно — разряд за разрядом.

Память процессора, процессорная память (англ. processor storage) — память, являющаяся частью процессора и предназначенная для хранения данных, непосредственно участвующих в выполнении операций, реализуемых арифметико-логическим устройством и устройством управления.

Память со встроенной логикой, функциональная память (англ. logic-in-memory) — вид памяти, содержащий встроенные средства логической обработки (преобразования) данных, например их масштабирования, преобразования кодов, наложения полей и др.

Рабочая (промежуточная) память (англ. working (intermediate) storage):

  • Часть памяти ЭВМ, предназначенная для размещения временных наборов данных.
  • Память для временного хранения данных.

Реальная память (англ. real storage) — вся физическая память ЭВМ, включая основную и внешнюю память, доступная для центрального процессора и предназначенная для размещения программ и данных.

Регистровая память (англ. register storage) — вид памяти, состоящей из регистров общего назначения и регистров с плавающей запятой. Как правило, содержится целиком внутри процессора.

Свободная (доступная) память (англ. free space) — область или пространство памяти ЗУ, которая в данный момент может быть выделена для загрузки программы или записи данных.

Семантическая память (англ. semantic storage) — вид памяти, в которой данные размещаются и списываются в соответствии с некоторой структурой понятийных признаков.

Совместно используемая (разделяемая) память (англ. shareable storage) — вид памяти, допускающий одновременное использование его несколькими процессорами.

Память с защитой, защищённое ЗУ (англ. protected storage) — вид памяти, имеющий встроенные средства защиты от несанкционированного доступа к любой из его ячеек.

Память с последовательным доступом (англ. sequential access storage) — вид памяти, в которой последовательность обращённых к ним входных сообщений и выборок данных соответствует последовательности, в которой организованы их записи. Основной метод поиска данных в этом виде памяти — последовательный перебор записей.

Память с прямым доступом, ЗУ с произвольной выборкой (ЗУПВ) (англ. Random Access Memory, RAM) — вид памяти, в котором последовательность обращённых к ним входных сообщений и выборок данных не зависит от последовательности, в которой организованы их записи или их местоположения.

Память с пословной организацией (англ. word-organized memory) — вид памяти, в которой адресация, запись и выборка данных производится не побайтно, а пословно.

Статическая память (англ. static storage) — вид памяти, в котором положение данных и их значение не изменяются в процессе хранения и считывания. Разновидностью этого вида памяти является статическое ЗУПВ [static RAM].

Страничная память (англ. page memory) — память, разбитая на одинаковые области — страницы. Обмен с такой памятью осуществляется страницами.

Управляющая память (англ. control storage) — память, содержащая управляющие программы или микропрограммы. Обычно реализуется в виде ПЗУ.

Различные типы памяти обладают разными преимуществами, из-за чего в большинстве современных компьютеров используются сразу несколько типов устройств хранения данных.

Первичная и вторичная память

Первичная память характеризуется наибольшей скоростью доступа. Центральный процессор имеет прямой доступ к устройствам первичной памяти; иногда они даже размещаются на одном и том же кристалле.

В традиционной интерпретации первичная память содержит активно используемые данные (например, программы, работающие в настоящее время, а также данные, обрабатываемые в настоящее время). Обычно бывает высокоскоростная, относительно небольшая, энергозависимая (не всегда). Иногда её называют основной памятью.

Вторичная память также называется периферийной. В ней обычно хранится информация, не используемая в настоящее время. Доступ к такой памяти происходит медленнее, однако объёмы такой памяти могут быть в сотни и тысячи раз больше. В большинстве случаев энергонезависима.

Однако это разделение не всегда выполняется. В качестве основной памяти может использоваться диск с произвольным доступом, являющийся вторичным запоминающим устройством (ЗУ). А вторичной памятью иногда называются отключаемые или извлекаемые ЗУ, например, ленточные накопители.

Во многих КПК оперативная память и пространство размещения программ и данных находится физически в одной памяти, в общем адресном пространстве.

Произвольный и последовательный доступ

ЗУ с произвольным доступом отличаются возможностью передать любые данные в любом порядке. Оперативное запоминающее устройство, ОЗУ и винчестер — примеры такой памяти.

ЗУ с последовательным доступом, напротив, могут передавать данные только в определённой последовательности. Ленточная память и некоторые типы флеш-памяти имеют такой тип доступа.

Блочный и файловый доступ

На винчестере, используются 2 типа доступа. Блочный доступ предполагает, что вся память разделена на блоки одинаковых размеров с произвольным доступом. Файловый доступ использует абстракции — папки с файлами, в которых и хранятся данные. Другой способ адресации — ассоциативная использует алгоритм хеширования для определения адреса.

Типы запоминающих устройств

  • Полупроводниковая:

    См. также

    Литература

    • Память // Словарь компьютерных терминов = Dictionary of Personal Computing / Айен Синклер; Пер. с англ. А. Помогайбо — М.: Вече, АСТ, 1996. — С. 177, ISBN 5-7141-0309-2.

    Ссылки

Хранение информации. Носители информации — урок. Информатика, 5 класс.

Хранение информации

Каждый человек хранит определённую информацию в собственной памяти — «в уме». Ты помнишь свой адрес, номер телефона, как зовут твоих родных и близких, друзей. Такую память можно назвать оперативной.

Но есть информация, которую трудно запомнить. Её человек записывает в записную книжку, ищет в справочнике, словаре, энциклопедии. Это внешняя память. Её можно назвать долговременной.

У компьютера также существуют два вида памяти.

Оперативная память — предназначена для временного хранения информации, т. е. на момент, когда компьютер работает (после выключения компьютера информация удаляется из оперативной памяти).

Долговременная память (внешняя) — для долгого хранения информации (при выключении компьютера информация не удаляется).

Существует память одного человека и память человечества. Память человечества, в отличие от памяти человека, содержит все знания, которые были накоплены людьми за всё время своего существования и которыми могут воспользоваться потомки. Эти знания представлены в книгах, запечатлены в живописных полотнах, статуях и архитектурных произведениях знаменитых мастеров.

В \(1826\) году Жозеф Нисефор Ньепс сделал первую в мире фотографию и называлась она «Вид из окна». Позже в \(1838\) году была сделана фотография, на которой были запечатлены люди.

В \(1888\) году в Париже был продемонстрирован первый в мире фильм — «Сцены в саду Раундхэй», длительность которого составила \(1,66\) секунды. Позже в \(1895\) году братьями Люмьер был снят первый фильм, показанный зрителям на большом экране. Назывался этот фильм «Выход рабочих с фабрики» и его длительность была \(42\) секунды.

Благодаря этим изобретениям у человечества появилась возможность сохранять для будущих поколений лица людей, явления природы, значимые исторические события и т.д.

Звуковую информацию люди научились сохранять намного раньше, чем фото и видео информацию, используя для этого ноты. С помощью нот из поколения в поколение передаются музыкальные произведения великих композиторов.

В середине прошлого столетия в Японии было налажено производство магнитофонов. До сих пор магнитофоны применяются для записи и воспроизведения звуковой информации.

Обрати внимание!

Современный компьютер может хранить в своей памяти разные виды информации: текстовую, числовую, звуковую и видеоинформацию.

Информация хранится в разном виде: текста,  рисунка,  схемы, фотографии, звукозаписи, кино и видеозаписи и т. д.
В  каждом случае применяются свои носители.

Носитель — это материальная среда, используемая для записи и хранения информации.

Бумажные носители

Бумага изобретена во \(II\) веке н. э. в Китае.

Информационный объём книги из \(300\) страниц по \(2000\) символов на странице составляет примерно \(600\) \(000\) байтов, или \(586\) Кб.

Школьная библиотека из \(5000\) томов имеет информационный объём приблизительно \(2861\) Мб \(=\) \(2,8\) Гб.

На первых компьютерах использовали бумажные носители — перфоленту и перфокарту.

Магнитные носители

В \(XIX\) веке была изобретена магнитная запись (на стальной проволоке диаметром \(1\) мм).

В \(1906\) году был выдан  патент на магнитный диск.

Ферромагнитная лента использовалась как носитель для ЭВМ первого и второго поколения. Её объём был \(500\) Кб. Появилась возможность записи звуковой и видеоинформации.

В начале \(1960\)-х годов в употребление входят магнитные диски.

Винчестер компьютера — это пакет магнитных дисков, надетых на общую ось.

Информационная ёмкость современных винчестеров измеряется в Гб.

Компакт-диск (англ. Compact Disc) — оптический носитель информации в виде пластикового диска с отверстием в центре, процесс записи и считывания информации с которого осуществляется при помощи лазера.

Источники:

Л. Л. Босова. Информатика и ИКТ учебник для 5 класса. Москва Бином. Лаборатория знаний 2012.

На чем хранить информацию: разоблачаем популярные средства хранения — Статьи об архивном деле, документообороте, делопроизводстве

Как обеспечить сохранность информации? Не спешите с ответом на этот, казалось бы, простой вопрос. Для начала внимательно изучите преимущества и недостатки доступных средств хранения. С плюсами вам помогут производители, а подводные камни с пучины информационной мы поднимем вместе в этой статье.

Как обеспечить сохранность информации? Какие материалы при этом использовать? Что нужно учитывать при выборе средств хранения? Не спешите с ответами на эти, казалось бы, простые вопросы. Для начала следует внимательно изучить преимущества и недостатки доступных средств хранения. С плюсами вам помогут производители, а подводные камни с пучины информационной мы поднимем вместе с вами в этой статье.

Порой для того, чтобы сохранить жизненно важную информацию, достаточно случайной салфетки или старой визитки. Но для записи финансового отчета или видео с недавнего корпоратива такие средства хранения навряд ли подойдут. Кроме того, существуют огромные объемы информации, представляющей юридическую, коммерческую, историческую или научную ценность. Ее необходимо хранить годами или даже столетиями, в связи с чем выбор средства хранения имеет первостепенную значимость. Что выбрать в динамичном мире технологических новинок и старых проверенных носителей? Предлагаем вашему вниманию обзор основных средств хранения информации с их самой неприглядной стороны.

Бумага


Бумага – старейшее средство хранения информации. Как известно, самопроизвольное изменение свойств бумаги в результате старения связано с изменением химической структуры и, в частности, ее основного компонента – целлюлозы. Развитие технологий положительно сказалось на качестве используемых в производстве материалов. Новые технологические процедуры позволили значительно улучшить физические, химические и электростатические свойства бумаги. Научный прогресс также привел к появлению более продвинутых способов нанесения информации: чернила на основе сажи и перьев, грифельные карандаши, авторучки, типографская краска, ленты для печатных машинок и краски для принтера.

Способ нанесения информации, равно как и качество самого материала, в конечном итоге определяют долговременность хранения данных на бумаге. Наши предки записывали буквы грифелем или чернилами на основе углерода, который не меняет свои свойства столетиями и является химически стойким веществом. Текст обычно наносился с помощью физического повреждения поверхности – методом продавливания. По такой же технологии работали печатные машинки и матричные принтеры, в которых неорганические красители распылялись контактным способом: сначала бумага продавливалась, а затем краситель проникал в материал на заданную глубину.

Этот старый способ нанесения информации посредством механического продавливания не сопоставим с тем, что сегодня используют в обычных струйных и лазерных принтерах. Струйный принтер распыляет жидкие чернила с определенного расстояния без физического изменения поверхности. Глубину проникновения чернил производители не сообщают, впрочем, как и то, из чего они сделаны. С лазерными принтерами ситуация еще хуже. По технологии порошок тонера наносится на бумагу, затем лист проходит через нагретые до высокой температуры ролики, и гранулы порошка спекаются. При этом тонер в бумагу часто вообще не впитывается. Известны случаи, когда через несколько лет краска просто отваливалась от листа целыми кусками, как фрагменты старой мозаики.

Фотопленка


С фотопленкой дела обстоят гораздо лучше, чем с бумагой.

Во-первых, технологии производства, по крайней мере, черно-белой пленки, проверены временем. Они практически не меняются, поэтому можно с уверенностью утверждать, что материалы сохранятся на протяжении длительного времени, даже если вы купите самую обычную пленку из ближайшего фотомагазина. При этом шансы на долгую жизнь у профессиональных пленок, безусловно, выше, поскольку они отличаются от любительских специальными добавками, замедляющими процесс старения. Однако и требования к условиям хранения профессиональных пленок несколько жестче.

Во-вторых, в отличие от бумаги фотопленка имеет срок годности, в течение которого производители гарантируют сохранение ее свойств. По истечении этого времени начинается химический процесс, вызывающий старение фотопленки, которое можно сдержать при соблюдении температурно-влажностного и светового режимов хранения.

Существенный недостаток в работе с фотопленкой – стоимость пленки и оборудования (фотоаппарат или фотокамера, реактивы для проявления и закрепления снимка, проекторы для просмотра готовых материалов) относительно высока.

Магнитная лента


Наверняка вы помните свой старый кассетный магнитофон, на смену которому позже пришли видеоплееры и видеомагнитофоны. Носителем информации в них были сменные кассеты. С развитием информационных технологий магнитную ленту стали использовать и для хранения информации в цифре.

Специальные устройства (стримеры) в цифровом виде записывают на ленту информацию на ленту, которая хранится приблизительно так же, как и на компьютере: в виде файлов. Ранее стримеры широко использовались для хранения резервных копий данных. В быту такие устройства не прижились. Прежде всего это связано со сложностью доступа к информации, записанной на ленту. Сначала ее нужно перемотать до того места, на котором записана нужная информация, после чего подождать, пока данные будут считаны в память компьютера. Не каждому хватит терпения на такие технологические заморочки. Одно время выпускались платы расширения к компьютеру, при помощи которых можно было хранить данные на аудиокассетах, а позже и на видеокассетах, используя совместно с платой, которая вставляется в компьютер, аудио- или видеомагнитофон.

Долгосрочность хранения информации на магнитной ленте в значительной степени зависит от качества самой ленты. К примеру, встречаются низкокачественные ленты, магнитный слой с которых со временем просто осыпается, и, если на видео вы увидите шум, то прочитать цифровые данные с такой ленты будет проблематично. Специальная лента для стримера рассчитана на более длительное хранение информации и более активное использование. Это связано с тем, что при записи на ленту используется специальное кодирование информации, которое позволяет надежно восстановить ее при считывании даже в случае, если некоторые биты информации будут декодированы неверно (пользователь ничего не заметит). Кроме того, при записи может одновременно создаваться несколько копий данных (на ширину пленки могут параллельно писаться несколько дорожек), что также положительно сказывается на длительности хранения.

Проблема, которая потенциально поджидает каждого любителя магнитной пленки, – это быстрое устаревание оборудования. Не факт, что через несколько лет при поломке нынешнего устройства вам удастся найти ему замену, даже просто для того, чтобы считать данные и перенести их на новый носитель. Другой неприятный момент в работе с магнитной пленкой: кассеты необходимо регулярно перематывать. В противном случае соприкасающиеся слои пленки намагничивают друг друга, а значит, магнитная лента не сможет надежно хранить информацию долгое время. В промышленном оборудовании применяются роботизированные комплексы, которые автоматически меняют кассеты по мере их заполнения и периодически перематывают ленты.

Хранить пленки нужно с особой осторожностью, так как магнитные поля, которые нас окружают и абсолютно невидимы, могут повредить информацию на ленте. Так, не допускается использование ферромагнитных металлических стеллажей. При размещении пленки на стальных стеллажах необходимо размагнитить и замкнуть контуры стеллажа: соединение металлических частей стеллажа электропроводом и их эффективное заземление. Не будет лишним напомнить, что магнитная пленка, как и всякий носитель, требует также соблюдения определенного температурно-влажностного режима.

Дискеты


Дискеты – это прошлый век. В буквальном смысле. Они были популярны с 1970-х и до конца 1990-х годов, когда на смену пришли более емкие и удобные CD, DVD и флеш-накопители. Дисководы для 3,5-дюймовых дискет до сих пор можно приобрести в свободной продаже, однако в современные компьютеры их практически не устанавливают. Причина исчезновения очевидна – маленький объем хранимой на дискете информации (1,4 мегабайта) и низкая надежность. К хранению дискет применимы те же требования, что и к магнитным пленкам.

CD/DVD


Низкая стоимость и общедоступность – главные достоинства CD и DVD-дисков. Но, к сожалению, информация на них нередко полностью (или частично) утрачивается уже через два-три года. Это происходит из-за разрушения красящего слоя, вызванного воздействием солнечных лучей и ионизирующим излучением.

Иногда в производстве больших партий используется штамповка, похожая на производство виниловых грампластинок. В отличие от обычных CD и DVD, такие диски могут служить годами.

Производители утверждают, что при соблюдении условий хранения некоторые типы дисков (CD-R, DVD-R) можно использовать от 100 до 200 лет. Однако на практике эти оптимистичные заявления не подтверждаются.

Жесткий диск (HDD)


На сегодняшний день, пожалуй, самое распространенное устройство для хранения информации. Жесткие диски могут быть внутренними (устанавливаются внутрь корпуса) и внешними (присоединяются к устройству с помощью USB-кабеля). В последнем случае жесткий диск обладает размерами, позволяющими носить его в кармане пиджака и подключать его практически к любому компьютеру в USB-разъем.

С каждым годом стоимость единицы объема хранимой информации снижается. Информация хранится на пластинах, находящихся внутри герметичного контейнера и покрытых магнитным материалом. Технология записи похожа на магнитную ленту, а само устройство – на дискету. Основное отличие – в используемых материалах. Кроме того, на жестком диске присутствует, во-первых, электроника, которая может выйти из строя, например, от скачка напряжения в сети, а во-вторых – высокоточная механика. Благодаря тому, что при работе считывающие головки не касаются поверхности диска, поверхность не изнашивается и может служить для хранения информации в течение многих лет.

При неосторожном обращении (падение, тряска во время работы) жесткие диски подвержены выходу из строя. Так, одного резкого встряхивания полностью исправного диска может быть вполне достаточно, чтобы потерять всю записанную на нем информацию без возможности восстановления. При аккуратном обращении диски исправно служат более десяти лет при активном каждодневном использовании. Правда, в последнее время качество оборудования оставляет желать лучшего, так как в погоне за низкой ценой производители экономят на оборудовании и материалах.

Флеш-память (flash memory), флеш-диски (flash drive)


Флеш-накопители – это носители информации, использующие для хранения электрически стираемую энергонезависимую память. Если магнитная лента, дискеты и жесткие диски были придуманы и широко использовались еще на заре развития компьютерной техники, то флеш-память стала популярной относительно недавно. Это объясняется прорывом в области технологий производства микросхем.

Существуют как дорогие твердотельные накопители большого объема, так и бюджетные устройства известные, как флешки и карты памяти. На сегодняшний день они являются, пожалуй, самыми доступными и удобными средствами для каждодневного использования. Карта памяти является полностью электронным устройством и может быть подключена к устройству через кард-ридер. В отличие от них, флеш-диски не требуют дополнительных механизмов для подключения к компьютеру.

Заявленная производителями надежность хранении информации – до десяти лет. В отличие от жестких дисков, флеш-накопители не боятся тряски и падений с небольшой высоты. Они легки, вместительны и имеют высокую емкость, достаточную для того, чтобы записать несколько фильмов или десятки тысяч документов на одно устройство.

При каждодневном использовании флеш-диски довольно часто выходят из строя, например, от статического электричества, которое выводит из строя нежную электронику. Причина может также заключаться в некачественном изготовлении и ошибках, допущенных инженерами при проектировании дешевых устройств, особенно флешек. Последние могут выйти из строя из-за поломки микроконтроллера. В этом случае информация теоретически может быть восстановлена прямо с микросхемы памяти с использованием специального оборудования. Если поврежденной оказалась сама микросхема, то восстановить данные невозможно.

* * *

Технологии не стоят на месте. И уже сегодня ученые создают такие носители информации, которые для обывателей кажутся частью научно-фантастических сюжетов. Однако при выборе средства хранения следует руководствоваться не только модными технологическими веяниями, но и здравым смыслом. Если для хранения информации вам достаточно нескольких мобильных гигабайт свободного места (размер стандартной флешки), то нет смысла покупать дорогие жесткие диски гигантского объема только для того, чтобы произвести впечатление на знакомых.

Кроме того, необходимо учитывать затраты как на покупку самого носителя, так и расходы, связанные с записью информации и обслуживанием оборудования (например, как в случае с фотопленкой). Для того чтобы обеспечить надежную сохранность данных, оптимальным решением будет выбор не одного, а нескольких средств хранения, которые смогут прийти на помощь друг другу в случае досадной порчи одного из носителей.

Устройства хранения информации. — Компьютерные советы и хитрости

Устройства хранения информации — любые аппаратные средства, способные к хранению информации или временно или постоянно.

Есть два типа устройств хранения, используемых в компьютерах: первичные устройства памяти, такие как RAM и вторичные устройства хранения, такие как жесткий диск. Вторичные устройства хранения информации могут быть съемными, внутренними, или внешними.

Без устройства хранения информации Ваш компьютер был бы не в состоянии сохранять любые настройки или информацию считался бы простым терминалом.

Примеры устройств хранения информации.

Магнитные устройства хранения информации.

Жесткий диск

Сегодня, магнитное хранение — один из наиболее распространенных типов хранения, используемый с компьютерами, и является технологией, которую используют компьютерные жесткие диски.

Оптические устройства хранения информации.

CD диски

Еще одним из основных методов хранения информации является оптическое хранение, которое использует лазеры и световые сигналы как метод чтения и записи данных.

  • Диски Blu-ray
  • Диски CD-ROM
  • Диски CD-R и CD-RW
  • DVD-R, DVD+R, DVD-RW и диски DVD+RW

Устройства флэш-памяти.

USB флэш накопитель

  • Флэш-память начинает заменять магнитные носители, поскольку эта технология становится более дешевой, более эффективной и надежно.
  • Флэш накопители
  • Карты памяти
  • Memory stick
  • SSD

Онлайн и облако.

Хранить данные онлайн и в «облачных» хранилищах становится популярным, поскольку людям необходимо получать доступ к своим данным больше чем с одного устройства.

  • «Облачные» хранилища
  • Сетевые среды передачи данных (Network media)

Бумажное хранение

На заре своего развития компьютеры не имели вышеупомянутых технологий для того, чтобы хранить информацию и должны были полагаться на бумагу. Сегодня, эти формы хранения редко встречаются или используются.

При сохранении чего-либо на компьютере он может спросить у Вас, куда сохранить информацию. По умолчанию большая часть информации сохраняется на Вашем компьютерном жестком диске. Если Вы захотите переместить информацию на другой компьютер, сохраните ее на съемное устройство хранения, такое как карта флэш-памяти.

Примечание

Следует иметь в виду, что, несмотря на то, что эти устройства действительно отправляют и получают информацию, их не считают устройствами ввода данных или устройствами вывода.

Что такое запоминающее устройство?

Обновлено: 02.08.2020, Computer Hope

Альтернативно именуемое цифровым хранилищем , хранилищем , хранилищем или хранилищем , устройство хранения — это любое оборудование, способное хранить информацию временно или постоянно. На рисунке показан пример внешнего вторичного запоминающего устройства Drobo.

Есть два типа запоминающих устройств, используемых с компьютерами: первичное запоминающее устройство, такое как ОЗУ, и вторичное запоминающее устройство, такое как жесткий диск.Вторичное хранилище может быть съемным, внутренним или внешним.

Примеры компьютерных хранилищ

Магнитные запоминающие устройства

Сегодня магнитное хранилище — один из наиболее распространенных типов хранилищ, используемых в компьютерах. Эта технология в основном используется на жестких дисках очень большого размера или гибридных жестких дисках.

Оптические запоминающие устройства

Еще одним распространенным типом запоминающего устройства является оптическое запоминающее устройство, в котором в качестве метода чтения и записи данных используются лазеры и свет.

Устройства флэш-памяти

Флэш-память

заменила большинство магнитных и оптических носителей, поскольку она становится дешевле, поскольку является более эффективным и надежным решением.

Онлайн и облако

Хранение данных в Интернете и в облачном хранилище становится популярным, поскольку людям требуется доступ к своим данным с нескольких устройств.

Хранение бумаги

Ранние компьютеры не имели метода использования какой-либо из вышеперечисленных технологий для хранения информации, и им приходилось полагаться на бумагу. Сегодня эти формы хранения используются или встречаются редко. На картинке показан пример того, как женщина вводит данные на перфокарту с помощью машины для перфокарт.

Примечание

Печатная копия считается формой хранения на бумаге, хотя ее нелегко использовать для ввода данных обратно в компьютер без помощи OCR.

Зачем нужна память на компьютере?

Без запоминающего устройства компьютер не может сохранять или запоминать какие-либо настройки или информацию и будет считаться «тупым» терминалом.

Несмотря на то, что компьютер может работать без запоминающего устройства, он сможет только просматривать информацию, если только он не подключен к другому компьютеру, у которого есть возможности хранения. Даже такая задача, как просмотр веб-страниц в Интернете, требует хранения информации на вашем компьютере.

Почему так много разных запоминающих устройств?

По мере развития компьютеров технологии, используемые для хранения данных, тоже, с повышенными требованиями к пространству для хранения.Поскольку людям нужно все больше и больше места, они хотят быстрее, дешевле и хотят брать его с собой, необходимо изобретать новые технологии. Когда разрабатываются новые устройства хранения, по мере того, как люди переходят на эти новые устройства, старые устройства больше не нужны и перестают использоваться.

Например, когда перфокарты впервые использовались в ранних компьютерах, магнитные носители, используемые для гибких дисков, были недоступны. После выпуска дискет их заменили приводы CD-ROM, которые были заменены приводами DVD, которые были заменены флэш-накопителями.Первый жесткий диск от IBM стоил 50 000 долларов, был всего 5 МБ, большим и громоздким. Сегодня у нас есть смартфоны, емкость которых в сотни раз больше по гораздо меньшей цене, которую мы можем носить в кармане.

Каждое усовершенствование устройств хранения данных дает компьютеру возможность хранить больше данных, а также быстрее сохранять и получать к ним доступ.

Что такое место хранения?

При сохранении чего-либо на компьютере он может запросить место хранения , в котором сохраняется информация о местоположении.По умолчанию большая часть информации сохраняется на жестком диске вашего компьютера. Если вы хотите переместить информацию на другой компьютер, сохраните ее на съемном запоминающем устройстве, например USB-накопителе.

Какие устройства хранения используются сегодня?

Большинство упомянутых выше запоминающих устройств больше не используются в современных компьютерах. Большинство компьютеров сегодня в основном используют SSD для хранения информации, а также возможность использовать USB-накопители и доступ к облачному хранилищу. Большинство настольных компьютеров и некоторые ноутбуки оснащены дисководом, способным читать и записывать компакт-диски и DVD.

Какое запоминающее устройство имеет наибольшую емкость?

Для большинства компьютеров самым большим запоминающим устройством является жесткий диск или твердотельный накопитель. Однако сетевые компьютеры также могут иметь доступ к более крупным хранилищам с большими ленточными накопителями, облачными вычислениями или устройствами NAS. Ниже приведен список устройств хранения от наименьшей емкости до наибольшей емкости.

Примечание

Многие устройства хранения доступны с разной емкостью. Например, с развитием жестких дисков их объем памяти увеличился с 5 МБ до нескольких терабайт.Таким образом, приведенный ниже список предназначен только для того, чтобы дать общее представление о разнице в размерах каждого устройства хранения, от наименьшей до наибольшей емкости хранения. Из списка есть исключения.

  1. Перфокарта
  2. Дискета
  3. Застежка-молния
  4. CD
  5. DVD
  6. Диск Blu-ray
  7. Флэш-привод
  8. Жесткий диск / SSD
  9. Ленточный накопитель
  10. NAS / облачное хранилище

Запоминающие устройства устройства ввода и вывода?

№Хотя эти устройства отправляют и получают информацию, они не считаются устройством ввода или устройством вывода. Более правильно называть любое устройство, способное хранить и читать информацию, как запоминающее устройство, диск, диск, привод или носитель.

Как получить доступ к запоминающим устройствам?

Доступ к запоминающему устройству на вашем компьютере зависит от операционной системы, которая используется на вашем компьютере, и от того, как она используется. Например, в Microsoft Windows вы можете использовать файловый менеджер для доступа к файлам на любом устройстве хранения.Microsoft Windows использует проводник в качестве файлового менеджера по умолчанию. На компьютерах Apple Finder считается файловым менеджером по умолчанию.

Какое последнее запоминающее устройство?

Одной из самых последних технологий устройств хранения, которые будут представлены, является NVMe, при этом SSD и облачное хранилище также являются недавно разработанными устройствами хранения. Кроме того, старые технологии, такие как жесткие диски и ленточные накопители, всегда разрабатывают новые методы, позволяющие устройствам хранить больше данных.

Условия для CD, Облако, Условия для дисковода гибких дисков, Условия для жестких дисков, Условия для оборудования, Устройство ввода-вывода, Условия для памяти, Энергонезависимая, Оптановая память, Постоянное хранилище, SAN, Условия на магнитной ленте

запоминающих устройств — информатика GCSE GURU

Что такое запоминающее устройство?

Устройства хранения — это компьютерное оборудование, используемое для запоминания / хранения данных.

Существует множество типов запоминающих устройств, каждое из которых имеет свои преимущества и недостатки.

Ниже приведены пояснения о различных устройствах хранения.

Перейти в раздел на этой странице:

На нашей странице облачных вычислений объясняются все преимущества и недостатки использования облака для хранения или предоставления услуг.

На нашей странице «Емкость хранилища данных» объясняется все о различных единицах хранения.


Жесткий диск (HDD)

Что такое жесткий диск?

Жесткие диски — это энергонезависимые магнитные запоминающие устройства, способные запоминать большие объемы данных.

Электромагнит в головке чтения / записи заряжает поверхность диска положительным или отрицательным зарядом, так представлены двоичные 1 или 0.

Затем головка чтения / записи способна обнаруживать магнитные заряды, оставленные на поверхности диска, это то, как считываются данные.

Поверхность диска разделена на концентрические окружности (дорожки) и сектора (клинья). Такое разделение поверхности дает физические адреса, позволяющие запомнить, где хранятся данные.

Печатная плата тщательно координирует вращающийся диск и поворотный рычаг привода, чтобы головка чтения / записи могла очень быстро получить доступ к любому месту.

Типичная емкость жесткого диска измеряется в терабайтах (ТБ).

Их можно установить внутри компьютера или приобрести в портативном (внешнем) формате.

Типичные приложения для жестких дисков

  • Настольные компьютеры
  • Портативные компьютеры
  • Телевизионные и спутниковые рекордеры
  • Серверы и мэйнфреймы
  • Портативные (внешние) диски иногда используются для резервного копирования домашних компьютеров или передачи больших файлов

Преимущества жестких дисков

  • Способен хранить большие объемы данных по доступным ценам
  • Высокая скорость чтения и записи
  • Надежная технология
  • Относительно небольшой размер

Недостатки жестких дисков

  • Из-за природы его движущиеся части со временем изнашиваются и ломаются
  • Хотя очень быстро, ожидание движущихся частей означает, что он никогда не будет работать так же быстро, как твердотельные накопители
  • Более хрупкий и менее надежный, чем твердотельный накопитель
  • Более высокое энергопотребление, чем a SSD
  • Движущиеся части создают некоторый шум

90 124

Твердотельный накопитель (SSD)

Что такое твердотельный накопитель?

Твердотельные накопители — это энергонезависимые запоминающие устройства, способные хранить большие объемы данных.

Они используют флэш-память NAND (миллионы транзисторов, последовательно соединенных на печатной плате), что дает им преимущество в отсутствии механических движущихся частей и, следовательно, немедленного доступа к данным.

Твердотельные накопители работают быстрее, чем традиционные жесткие диски, однако они значительно дороже.

Эти расходы означают, что типичная емкость обычно измеряется в гигабайтах (ГБ).

Их можно установить внутри компьютера или приобрести в портативном (внешнем) формате.

Пока мы не дойдем до точки, когда SSD большой емкости станут доступными по цене, компромисс заключается в использовании двух дисковых накопителей внутри компьютера. Твердотельный накопитель в качестве основного диска для ваших важных программ и операционной системы и традиционный жесткий диск для хранения музыки, документов и изображений (которым не требуется более быстрое время доступа).

Отсутствие движущихся частей в SSD делает его очень прочным и надежным, идеально подходящим для портативного устройства.

Типичные приложения для твердотельных накопителей

  • Смартфоны
  • Планшетные компьютеры
  • Высокопроизводительные ноутбуки
  • Настольные решения с двумя приводами
  • Портативные диски иногда используются в видеокамерах HD

Преимущества твердотельных накопителей

  • Чрезвычайно высокая скорость чтения / записи
  • Маленький физический размер и очень легкий, идеально подходит для портативных устройств
  • Нет движущихся частей, которые могут износиться, выйти из строя или повредиться — идеально для повышения надежности и долговечности портативных компьютеров и устройств
  • Потребляет меньше энергии, чем жесткий диск, увеличивающий время автономной работы
  • Очень тихий
  • Вырабатывает меньше тепла

Недостатки твердотельных накопителей

  • Дорогой для покупки (на ГБ)
  • Ограниченная емкость из-за расходов
  • Ограниченное количество операций записи

Оперативная память (RAM)

Что такое RAM?

RAM — это основная память компьютера.Это очень быстрый твердотельный носитель данных, к которому ЦП напрямую обращается.

Любые открытые программы или файлы на компьютере временно сохраняются в ОЗУ во время использования.

Будучи энергозависимым, любые данные, хранящиеся в ОЗУ, будут потеряны при отключении питания. Это делает ОЗУ совершенно непригодным для длительного постоянного хранения данных — вместо этого это роль жесткого диска или твердотельного накопителя.

Данные копируются из вторичного хранилища (HDD, SSD) в RAM по мере необходимости. Это связано с тем, что использование жесткого диска в качестве основной памяти приведет к тому, что компьютер будет работать намного медленнее (жесткий диск или твердотельный накопитель не доступен напрямую для ЦП и не так быстр, как ОЗУ).

RAM — относительно дорогое устройство хранения данных, и его типичная емкость измеряется в гигабайтах (ГБ).

Компьютеры, на которых объем ОЗУ превышает рекомендованный минимум, выиграют от лучшей производительности и многозадачности.

Существует два типа RAM (SRAM и DRAM), каждый из которых имеет свои преимущества и недостатки.

Типичные применения ОЗУ

  • Быстрая и непосредственно доступная временная (рабочая) память, необходимая компьютеру

Преимущества ОЗУ

  • Прямой доступ к ЦП, ускоряющий обработку данных
  • Быстрое твердотельное хранилище, что делает обработка данных быстрее

Недостатки RAM

  • Относительно дорогая память
  • Энергозависимая — любые данные, хранящиеся в RAM, теряются при отключении питания

Статическая RAM (SRAM)

Данные в SRAM не требуют обновления.

Однако технология более громоздкая, что означает меньший объем памяти на чип.

  • Дороже, чем DRAM
  • Намного быстрее, чем DRAM
  • Потребляет меньше энергии
  • Обычно используется в кэш-памяти

Динамическое ОЗУ (DRAM)

Наиболее распространенный тип используемого ОЗУ.

Данные необходимо постоянно обновлять, иначе они исчезнут.

Постоянное обновление данных требует времени и снижает производительность.

  • Дешевле, чем SRAM
  • Обычно используется в основной памяти

Диски CD, DVD и Blu-Ray

Что такое оптические запоминающие диски?

Приводы CD, DVD и Blu-Ray являются оптическими запоминающими устройствами.

Двоичные данные сохраняются как изменения текстуры поверхности диска, которые иногда воспринимаются как микроскопические ямки и неровности.

Эти «неровности» расположены на непрерывной спиральной дорожке, начинающейся в центре диска.

Пока диск вращается с постоянной скоростью, лазер направлен на спиральную дорожку «неровностей».

Лазер будет отражаться / отражаться от поверхности диска в разных направлениях в зависимости от того, был прочитан 1 или 0.

Емкость диска

В погоне за большей оптической емкостью были созданы DVD, а затем Blu-Ray.

CD DVD Blu-Ray
700 МБ 4,7 ГБ 25 ГБ — 128 ГБ

Типичные приложения для оптических носителей

  • CD — Аудио и компакт-диски малого размера данных
  • DVD — фильмы и данные стандартной четкости
  • Blu-Ray — HD-видео и большие объемы данных

DVD

Несмотря на одинаковый физический размер, DVD может содержать больше данных, чем компакт-диск.

Для этого используется более плотно упакованная спиральная дорожка для хранения данных на диске.

Для точного доступа к меньшим «выступам» в приводе DVD используется более тонкий красный лазер, чем в стандартном приводе компакт-дисков.

Для дальнейшего увеличения емкости DVD-диски также могут быть разделены на два слоя.

Blu-Ray

Технология Blu-Ray помещает еще больше данных на диск того же размера, что и CD или DVD.

Спиральные дорожки данных на диске Blu-Ray настолько малы, что для считывания «выступов» приходится использовать специальный синий (фиолетовый) лазер.

Как и DVD, диски Blu-Ray могут хранить данные на нескольких слоях.

Записываемый оптический носитель

CD-ROM, DVD-ROM, Blu-Ray-ROM

Только чтение — данные постоянно записываются на диск в момент изготовления.

CD-R, DVD-R, BD-R

Записываемые — чистые диски, которые можно записать (записать) один раз.

CD-RW, DVD-RW, BD-RE

Перезаписываемые — чистые диски, которые можно записывать (записывать) снова и снова (можно стирать и использовать многократно).


DVD-RAM

Что такое DVD-RAM?

DVD-RAM — это оптический носитель.

Он отличается от традиционного DVD тем, что данные хранятся на концентрических дорожках (например, на жестком диске), что позволяет выполнять операции чтения и записи одновременно.

Это означает, например, что при использовании в персональном видеомагнитофоне вы можете записывать одну телевизионную программу, одновременно просматривая запись другой. Это позволяет использовать такие удобные функции, как «сдвиг по времени».

При использовании в системе видеонаблюдения вы можете просматривать отснятый материал, продолжая записывать свои камеры.

Емкость DVD-RAM составляет 4,7 ГБ, или 9,4 ГБ для двусторонних дисков.

Типичные приложения для DVD-RAM

  • Персональные и цифровые видеомагнитофоны
  • CCTV высокого класса

Преимущества DVD-RAM

  • Одновременное чтение и запись
  • традиционный DVD-RW
  • Имеет язычки защиты от записи для предотвращения случайного удаления при использовании в дополнительном картридже.
  • Данные сохраняются в течение примерно 30 лет.Такой долгий срок службы отлично подходит для архивирования данных.
  • Надежная запись на диски, потому что проверка выполняется аппаратно, а не программно.

Недостатки DVD-RAM

  • Скорости диска выше 5x встречаются реже
  • Меньшая совместимость, чем у DVD -RW

ROM

Что такое ROM?

ROM — это энергонезависимая микросхема памяти, содержимое которой нельзя изменить.

Часто используется для хранения процедур запуска в компьютере (например,грамм. BIOS).

Типичные приложения для ПЗУ

  • Сохранение процедуры запуска компьютера

Флэш-память USB

Что такое флэш-память USB?

Flash — это энергонезависимые твердотельные запоминающие устройства, которые используют флэш-память NAND для хранения данных (миллионы транзисторов).

USB — это USB-соединение, которое позволяет пользователям подключать устройство к USB-порту компьютера.

Другие типы флэш-памяти включают карты памяти, используемые в цифровых камерах.

Флэш-память бывает разной емкости, чтобы удовлетворить любой бюджет и требования.

Типичные области применения флеш-памяти

  • Карты памяти USB — сохранение и передача документов и т. Д.
  • Карты памяти в цифровых камерах

Преимущества флэш-памяти

  • Портативный, маленький и легкий
  • Долговечность, флеш-память не имеет движущихся частей повреждение
  • Диапазон доступных емкостей
  • Высокие скорости, без движущихся частей во время загрузки

Недостатки флэш-памяти

  • Ограниченное (но огромное) количество возможных циклов записи
  • Действительно большие емкости редко
  • В относительном выражении это более дорогой вариант хранения по сравнению с жестким диском.

Наша страница облачных вычислений объясняет все преимущества и недостатки использования облака для хранения или предоставления услуг.

Типы устройств хранения — Dropbox

Хранение в компьютерных системах

Запоминающее устройство — это аппаратное обеспечение, которое в основном используется для хранения данных. В каждом настольном компьютере, ноутбуке, планшете и смартфоне будет какое-то запоминающее устройство, и вы также можете получить автономные внешние накопители, которые можно использовать на нескольких устройствах.

Хранилище необходимо не только для хранения файлов, но и для запуска задач и приложений.Любой файл, который вы создаете или сохраняете на своем компьютере, сохраняется на запоминающем устройстве вашего компьютера, как и любые используемые вами приложения, а также операционная система, в которой работает ваш компьютер.

По мере развития технологий устройства хранения данных также претерпевают значительные изменения. В настоящее время запоминающие устройства бывают разных форм и размеров, и есть несколько различных типов запоминающих устройств, которые обслуживают разные устройства и функции.

Устройство хранения также известно как носитель или носитель данных, а цифровое хранилище измеряется в мегабайтах (МБ), гигабайтах (ГБ) и, в наши дни, в терабайтах (ТБ).

Некоторые компьютерные запоминающие устройства могут хранить информацию постоянно, в то время как другие могут хранить информацию только временно. Каждый компьютер имеет как первичную, так и вторичную память, причем первичная память действует как кратковременная память компьютера, а вторичная как долговременная память компьютера.

Первичная память: оперативная память (ОЗУ)

Оперативная память или ОЗУ — это основное хранилище компьютера.

Когда вы работаете с файлом на своем компьютере, он временно сохраняет данные в вашей оперативной памяти.ОЗУ позволяет выполнять повседневные задачи, такие как открытие приложений, загрузка веб-страниц, редактирование документа или игры, а также позволяет быстро переходить от одной задачи к другой без потери прогресса. По сути, чем больше ОЗУ вашего компьютера, тем более плавно и быстро вы выполняете многозадачность.

RAM — это энергозависимая память, то есть она не может удерживать информацию после выключения системы. Например, если вы скопируете блок текста, перезагрузите компьютер, а затем попытаетесь вставить этот блок текста в документ, вы обнаружите, что ваш компьютер забыл скопированный текст.Это потому, что он хранился в вашей оперативной памяти только временно.

ОЗУ

позволяет компьютеру получать доступ к данным в произвольном порядке, поэтому чтение и запись происходит намного быстрее, чем во вторичной памяти компьютера.

Вторичное хранилище: жесткие диски (HDD) и твердотельные накопители (SSD)

Помимо ОЗУ, каждый компьютер также имеет другой накопитель, который используется для долгосрочного хранения информации, и это называется вторичным хранилищем.Любой файл, который вы создаете или загружаете, сохраняется во вторичном хранилище компьютера. В компьютерах в качестве вторичного хранилища используются два типа запоминающих устройств: жесткие диски и твердотельные накопители. Хотя жесткие диски являются более традиционными из двух, твердотельные накопители быстро обгоняют жесткие диски в качестве предпочтительной технологии для вторичного хранилища.

Вторичные запоминающие устройства часто бывают съемными, поэтому вы можете заменить или обновить запоминающее устройство своего компьютера или перенести накопитель на другой компьютер. Однако есть заметные исключения, такие как MacBook, в которых нет съемного хранилища.

Жесткие диски (HDD)

Жесткий диск (HDD) — оригинальный жесткий диск. Это магнитные запоминающие устройства, которые существуют с 1950-х годов, хотя со временем они значительно эволюционировали.

Жесткий диск состоит из набора вращающихся металлических дисков, называемых пластинами. На каждом вращающемся диске есть триллионы крошечных фрагментов, которые можно намагнитить, чтобы представить биты (единицы и нули в двоичном коде). Приводной рычаг с головкой чтения / записи сканирует вращающиеся пластины и намагничивает фрагменты, чтобы записать цифровую информацию на жесткий диск, или обнаруживает магнитные заряды для считывания информации с него.

Жесткие диски используются не только в качестве хранилища ноутбуков и ПК, но и для телевизионных и спутниковых рекордеров и серверов.

Твердотельные накопители (SSD)

Твердотельные накопители появились гораздо позже, в 90-х годах. SSD-накопители не полагаются на магниты и диски, вместо этого они используют тип флэш-памяти, называемый NAND. В SSD полупроводники хранят информацию, изменяя электрический ток цепей, содержащихся в накопителе. Это означает, что в отличие от жестких дисков, твердотельные накопители не требуют движущихся частей для работы.

Из-за этого твердотельные накопители не только работают быстрее и плавнее, чем жесткие диски (жестким дискам требуется больше времени для сбора информации из-за механической природы их пластин и головок), но и, как правило, они служат дольше, чем жесткие диски (с таким большим количеством сложных движущихся частей жесткие диски более долговечны. уязвимы для повреждений и износа).

Помимо новых ПК и ноутбуков высокого класса, вы можете найти твердотельные накопители в смартфонах, планшетах, а иногда и в видеокамерах.

Внешние запоминающие устройства

Помимо носителей информации, содержащихся в компьютере, существуют также цифровые запоминающие устройства, внешние по отношению к компьютерам.Они обычно используются для увеличения емкости хранилища, когда на компьютере мало места, чтобы обеспечить большую мобильность и облегчить передачу файлов с одного устройства на другое.

Внешние жесткие диски и твердотельные накопители

В качестве внешних накопителей можно использовать как жесткие диски, так и твердотельные накопители. Как правило, они предлагают самую большую емкость хранения среди внешних вариантов: внешние жесткие диски предлагают до 20 ТБ памяти, а внешние твердотельные накопители (по разумной цене) предлагают до 8 ТБ памяти.

Внешние жесткие диски и твердотельные накопители работают точно так же, как и их внутренние аналоги.Большинство внешних накопителей можно подключить к любому компьютеру; они не привязаны к одному устройству, поэтому представляют собой достойное решение для передачи файлов между устройствами.

Устройства флэш-памяти

Мы упоминали флеш-память ранее, когда обсуждали твердотельные накопители. Устройство флэш-памяти содержит триллионы взаимосвязанных ячеек флэш-памяти, в которых хранятся данные. Эти ячейки содержат миллионы транзисторов, которые при включении или выключении представляют единицы и нули в двоичном коде, что позволяет компьютеру считывать и записывать информацию на основе электрического тока транзисторов.

Пожалуй, самый узнаваемый тип устройства флэш-памяти — это флэш-накопитель USB. Эти небольшие портативные запоминающие устройства, также известные как флэш-накопители или просто «USB», долгое время были популярным выбором для дополнительного компьютерного хранилища. До того, как стало быстро и легко обмениваться файлами в Интернете, USB-флэш-накопители были в основном необходимы для простого перемещение файлов с одного устройства на другое.

В наши дни флеш-накопитель USB может вместить до 2 ТБ. Они дороже на гигабайт, чем внешний жесткий диск, поэтому, хотя маловероятно, что кто-то использует флэш-накопители для хранения всех своих личных данных, они преобладали как простое и удобное решение для временного хранения и передачи файлов меньшего размера.

Помимо USB-накопителей, устройства флэш-памяти также включают SD и карты памяти, которые вы узнаете как носитель информации, используемый в цифровых камерах.

Оптические запоминающие устройства

Компакт-диски, DVD и Blu-Ray диски

используются не только для воспроизведения музыки и видео — они также выступают в качестве запоминающих устройств и в совокупности известны как оптические запоминающие устройства или носители на оптических дисках.

Двоичный код хранится на этих дисках в виде крохотных выступов вдоль дорожки, которая по спирали выходит из центра диска.Когда диск находится в работе, он вращается с постоянной скоростью, в то время как лазер, содержащийся в дисководе, сканирует неровности на диске. То, как лазер отражает или отскакивает от выпуклости, определяет, представляет ли он 0 или 1 в двоичной системе.

DVD имеет более узкую спиральную дорожку, чем компакт-диск, что позволяет хранить больше данных, несмотря на тот же размер, а в дисководах DVD используется более тонкий красный лазер, чем в дисководах компакт-дисков. DVD-диски также позволяют использовать два слоя для дальнейшего увеличения их емкости. Blu-Ray поднял вещи на новый уровень, сохраняя данные на нескольких слоях с еще меньшими выступами, и для их считывания требуется еще более тонкий синий лазер.

CD-ROM, DVD-ROM и BD-ROM относятся к оптическим дискам хранения, которые предназначены только для чтения, что означает, что данные, записанные на них, являются постоянными и не могут быть удалены или перезаписаны. Они обычно используются для программ установки программного обеспечения, но не могут использоваться в качестве личного запоминающего устройства.

Диски формата

CD-R, DVD-R и BD-R допускают запись, но не могут быть перезаписаны. Какие бы данные вы ни сохранили на чистый записываемый диск, они будут постоянно храниться на нем. Таким образом, они могут хранить данные, но они не так гибки, как другие устройства хранения.

CD-RW, DVD-RW и BD-RE могут быть перезаписаны, поэтому вы можете постоянно записывать на них новые данные и стирать с них ненужные данные. Хотя их в значительной степени обогнали новые технологии, такие как флэш-память, диски CD-RW долгое время были лучшим выбором для внешнего хранилища — большинство настольных компьютеров и многие ноутбуки имеют дисковод для компакт-дисков или DVD-дисков.

CD может хранить до 700 МБ данных, DVD-DL может хранить до 8,5 ГБ, а Blu-Ray может хранить от 25 до 128 ГБ данных.

Флоппи-диски

Хотя они могут в основном устареть на данный момент, мы не можем обсуждать устройства хранения, не упомянув хотя бы скромную дискету.Дискеты были первыми широко доступными портативными съемными запоминающими устройствами. Они работают так же, как жесткие диски, но в гораздо меньшем масштабе.

Емкость дискет никогда не превышала 200 МБ, пока CD-RW и флеш-накопители не стали излюбленными носителями информации. IMac был первым персональным компьютером, выпущенным без дисковода для гибких дисков, в 1998 году, и с этого момента более 30-летнее господство гибких дисков очень быстро пришло в упадок.

Облачное хранилище

Хотя облачное хранилище и не является устройством само по себе, оно является новейшим и наиболее универсальным типом хранилища для компьютеров.«Облако» — это не одно место или объект, а скорее огромное количество серверов, размещенных в центрах обработки данных по всему миру. Когда вы сохраняете документ в облаке, вы сохраняете его на этих серверах.

Поскольку все хранится в сети, облачное хранилище не использует дополнительное хранилище вашего компьютера, что позволяет сэкономить место.

Облачное хранилище

предлагает значительно большую емкость, чем USB-накопители и другие физические устройства, избавляя вас от необходимости просматривать каждое устройство, чтобы найти файл, который вы ищете.

В то время как внешние жесткие диски и твердотельные накопители когда-то были популярны за их портативность, они тоже уступают облачным хранилищам. Внешних жестких дисков, удобных для карманных устройств, не так много, и, хотя они, конечно, меньше и легче, чем внутренний накопитель компьютера, они по-прежнему являются материальными устройствами, о которых нужно заботиться. Облако, с другой стороны, может идти с вами куда угодно, не занимая вообще никакого физического пространства и без физических уязвимостей внешнего диска.

Внешние запоминающие устройства также были популярны как быстрое решение для передачи файлов, но, конечно, они полезны только в том случае, если у вас есть физический доступ к каждому устройству. Облачные вычисления развиваются в то время, когда многие предприятия работают удаленно. Вероятно, вы не стали бы размещать USB-накопитель за границей только для того, чтобы отправить большой файл коллеге, поэтому облачное хранилище действует как мост между удаленными сотрудниками, упрощая совместную работу издалека.

Если вы забыли принести на встречу жесткий диск с важными документами, вы ничего не можете сделать, кроме как вернуться и взять его.Если вы сломаете или полностью потеряете жесткий диск, вряд ли вы когда-нибудь вернете эти данные. Этих рисков нет для облачного хранилища — ваши данные зарезервированы и доступны в любое время и в любом месте, если у вас есть доступ к Интернету.

С помощью Dropbox Smart Sync вы можете получить доступ к любому файлу в Dropbox прямо со своего рабочего стола, так что это точно так же, как ваши файлы хранятся локально — только они не занимают место на вашем диске. Хранение всех ваших файлов в Dropbox означает, что они всегда находятся на расстоянии одного клика, к ним можно получить доступ с любого устройства с подключением к Интернету и ими можно мгновенно поделиться.

запоминающих устройств | Что, типы и для чего он используется?

Ресурсы хранения данных GCSE (14-16 лет)

  • Редактируемая презентация урока в PowerPoint
  • Редактируемые раздаточные материалы для исправлений
  • Глоссарий, охватывающий ключевые термины модуля
  • Тематические интеллектуальные карты для визуализации ключевых понятий
  • Печатные карточки, помогающие учащимся активнее вспоминать и повторять на основе уверенности Викторина с сопровождающим ключом для проверки знаний и понимания модуля

Ресурсы хранения данных уровня A (16-18 лет)

  • Редактируемая презентация урока в PowerPoint
  • Редактируемые раздаточные материалы для исправлений
  • Глоссарий, охватывающий ключевые термины модуля
  • Тематические интеллектуальные карты для визуализации ключевых понятий
  • Печатные карточки, помогающие учащимся активнее вспоминать и повторять на основе уверенности
  • Викторина с сопровождающим ключом для проверки знаний и понимания модуля

Запоминающее устройство — это компьютерное оборудование, используемое для сохранения, переноса и извлечения данных.Он может хранить и сохранять информацию как в краткосрочной, так и в долгосрочной перспективе. Это может быть устройство внутри или вне компьютера или сервера. Другие термины для запоминающего устройства — это носитель или носитель данных.
Запоминающее устройство — один из основных элементов любого компьютерного устройства. Он сохраняет практически все данные и приложения на компьютере, кроме аппаратной прошивки. Он бывает разных форм и размеров в зависимости от потребностей и функций.

Типы запоминающих устройств

Есть два разных типа запоминающих устройств:

Первичное запоминающее устройство Вспомогательное запоминающее устройство
Размер Меньшее Больше
Сохранение данных Временное Внутреннее Временное Внутреннее Временное Постоянное
Примеры ОЗУ, кэш-память Жесткий диск, компакт-диск, USB-накопитель

Примеры запоминающего устройства

  • Магнитное запоминающее устройство — один из самых популярных типов накопителей.
    • Дискета — Обычная 3 ½-дюймовая дискета может хранить 1,44 МБ данных.
    • Жесткий диск. Внутренний жесткий диск — это основное запоминающее устройство в компьютере. Внешний жесткий диск также известен как съемный жесткий диск. Он используется для хранения переносимых данных и резервных копий.
    • Магнитная полоса — Магнитный ленточный накопитель позволяет хранить видео и аудио на магнитной ленте, например, в магнитофонах и видеомагнитофонах.
    • Супердиск — Дисковод и дискета, вмещающие 120 и 240 МБ данных.
    • Кассета — магнитное запоминающее устройство, используемое для записи и воспроизведения звука.
    • Zip diskette — Как дискета, но более продвинутая.
  • Оптическое запоминающее устройство — использует лазеры и свет в качестве режима сохранения и извлечения данных.
    • Диск Blu-ray — Цифровое оптическое запоминающее устройство, предназначенное для замены формата DVD.
    • CD-ROM диск — оптическое запоминающее устройство, которое предназначено только для чтения или не может быть изменено или удалено.
    • Диск CD-R и CD-RW — CD-R — это записываемый диск, на который можно записывать один раз, а CD-RW — это перезаписываемый диск, на который можно записывать несколько раз.
    • DVD-R, DVD + R, DVD-RW и DVD + RW диск — DVD-R и DVD + R — это записываемые диски, на которые можно записывать один раз, а DVD-RW и DVD + RW — перезаписываемые диски, которые можно записывать. до нескольких раз. Разница между + и — в форматировании и совместимости.
  • Устройство флэш-памяти — теперь заменяет магнитное запоминающее устройство, так как оно более экономичное, функциональное и надежное.
    • Карта памяти — электронное устройство флэш-памяти, используемое для хранения цифровой информации и обычно используемое в мобильных электронных устройствах.
    • Карта памяти — Съемная карта памяти.
    • SSD — твердотельный накопитель — устройство флэш-памяти, в котором используются сборки интегральных схем для стабильного сохранения данных.
    • Флэш-накопитель USB, джамп-накопитель или флэш-накопитель — небольшое портативное запоминающее устройство, подключаемое через порт USB.
  • Интернет и облако — сейчас становится все более распространенным, поскольку люди получают доступ к данным с разных устройств.
    • Облачное хранилище — данные управляются удаленно и становятся доступными по сети.Базовые функции можно использовать бесплатно, но обновленная версия оплачивается ежемесячно в соответствии с нормой потребления.
    • Сетевые носители — аудио, видео, изображения или текст, которые используются в компьютерной сети. Сообщество людей создает и использует контент, которым обмениваются через Интернет.
  • Хранение бумаги — метод, используемый ранними компьютерами для хранения информации.
    • OMR — сокращение от Optical Mark Recognition — процесс сбора отмеченных данных о человеке из таких форм, как опросы и тесты.Он используется для чтения вопросников с несколькими вариантами ответов, которые затенены.
    • Перфокарта — кусок твердой бумаги, используемый для хранения цифровой информации, поступающей из перфорированных отверстий. Наличие или отсутствие отверстий в заранее определенных положениях определяют данные.

Yongnuo YN608RGB 3200-5500K Светодиодный кольцевой светильник YN608RGB 3200-5500K

Выбор устройства хранения

Существует множество компьютерных жестких дисков и запоминающих устройств для ремонта или модернизации вашего компьютера или ноутбука.Некоторые устройства хранения предназначены для резервного копирования ваших данных или упрощения обмена с другими. При покупке устройства хранения необходимо учитывать емкость хранилища, скорость передачи данных, возможность совместного использования, а также то, подходит ли оно для дома или бизнеса.

Внутренние и внешние жесткие диски предлагают много разных объемов хранения, а также совместимость с машинами. Найдите тот, который поддерживает ресурсы вашего компьютера и операционная система. Некоторые башни даже вмещают несколько жестких дисков, чтобы предоставить вам расширенное хранилище файлов и видео или избыточность для резервного копирования.

Типы жестких дисков

В традиционных жестких дисках используются пластины и головки чтения / записи для хранения и извлечения данных. Они доступны в различных размерах, чтобы поместиться в настольные башни или ноутбуки, и их обычно легко установить в качестве самостоятельного проекта. Альтернативой традиционным жестким дискам являются твердотельные накопители. Они работают без каких-либо движущихся частей, что делает их более тихими и стабильными. USB-накопители и другие внешние накопители подключаются к вашей башне или ноутбуку, увеличивая объем доступного дискового пространства.И твердотельные, и традиционные жесткие диски обычно являются устройствами plug-and-play, и вам нужно только подключить их к материнской плате или к розетке.

Сеть и хранилище резервных копий для предприятий

Для крупных и малых предприятий с важными данными, которые нуждаются в резервном копировании и к которым должны иметь доступ несколько пользователей, есть сетевое хранилище (NAS). NAS упрощает доступ всех ваших сотрудников к необходимой информации, а также делает ее доступной на разных компьютерах и других устройствах.Для резервного копирования данных существуют массивы жестких дисков, которые содержат несколько дисков и реплицируют файлы на основе различных схем RAID. У вас также есть возможность архивирования на магнитной ленте, которая предлагает простой способ восстановления данных, если вы потеряете их из-за факторов окружающей среды или по другим причинам.

Области применения портативных жестких дисков

Внешние жесткие диски, такие как флэш-накопители USB или более крупные модели, используются в различных областях. Вы можете защитить паролем многие из них, предотвратив доступ к содержимому неавторизованных пользователей.Большинство USB-накопителей также имеют небольшие размеры и легко переносятся, но при этом содержат большие объемы данных. Внешние диски большего размера вмещают еще больше, их емкость может достигать терабайт. Пользователи могут подключать их напрямую к сканерам и другому оборудованию, что позволяет быстро и легко передавать большое количество документов. Они также оптимальны для создания цифровых копий и резервных копий.

Отвечайте требованиям к хранению данных и безопасности вашего дома или предприятия с широким выбором компьютерных жестких дисков и запоминающих устройств, предлагаемых B&H Photo and Video.

Под поверхностью 1/2 «Гибкий рычаг с двумя шариками (16») FA-16-DBA-50

Сетевое хранилище

Сетевое хранилище (NAS) обеспечивает выделенную систему хранения, подключенную к Интернет-сети. Это упрощает авторизованным пользователям и клиентам хранение и получение данных из центра. Устройства хранения NAS просты в эксплуатации, доступны, удобны и позволяют легко выполнять резервное копирование данных. Они также обеспечивают масштабируемое хранилище, что делает их подходящим выбором для домашних компьютерных сетей и организаций.

Настройка сетевого хранилища

Самый быстрый способ настроить систему NAS — это приобрести уже собранное, готовое к использованию устройство NAS. Стандартные серверы NAS не только относительно компактны, но и оснащены серверным программным обеспечением и встроенными жесткими дисками, поэтому вы можете запустить устройство в считанные минуты. Другой вариант — купить роутер высокого класса со встроенным жестким диском. Если вы предпочитаете более практический подход, вы можете создать свою собственную систему хранения, преобразовав старый компьютер или соединив незанятый корпус NAS с одним или несколькими жесткими дисками.Обязательно проверьте жесткие диски, чтобы убедиться, что они совместимы с корпусом.

Сетевое хранилище как персональная облачная система

NAS хорошо работает как персональное облачное хранилище. Они сочетают удобство облачного хранилища с безопасностью владения жестким диском и всеми его данными. Серверы NAS являются подходящим выбором для малого бизнеса, поскольку они предоставляют удобное локальное облако, где сотрудники могут хранить, совместно использовать и создавать резервные копии файлов. В отличие от облачных сервисов, они предлагают более быстрое и экономичное решение для перемещения больших файлов.Если вы собираетесь использовать свое устройство NAS в качестве личного облака, обязательно ограничьте его доступ только к вашей сети.

Какие типы подключения доступны для устройств NAS?

Порт Ethernet является стандартной функцией большинства накопителей NAS. Они также могут иметь один или несколько USB-портов для внешних накопителей или совместимых USB-устройств, например принтеров. Другие модели предлагают слоты PCI и даже порты HDMI, которые позволяют подключать мониторы и телевизоры.

Начните поиск подходящего решения для хранения данных.B&H Photo and Video предлагает широкий выбор устройств хранения данных и аксессуаров для NAS, включая массивы жестких дисков, корпуса NAS и программное обеспечение для предприятий / RAID.

море и море ручка | B&H Photo Video

Знакомство с внешними жесткими дисками

Создавайте локальные резервные копии важных файлов и конфиденциальных данных на своих компьютерах, копируя их на внешние жесткие диски. В отличие от внутренних дисков, внешние накопители не находятся внутри компьютеров. Скорее они имеют защитные кожухи и подключаются к компьютерам через USB.

Типы внешних жестких дисков

Внешний жесткий диск может быть настольным или переносным. Портативные запоминающие устройства — это карманные устройства, в которых используются 2,5-дюймовые жесткие диски (HDD). Они подключаются к компьютерам через USB и используют одно и то же соединение для питания и передачи данных. Накопители для настольных ПК больше по размеру, используют 3,5-дюймовые жесткие диски и предлагают большую емкость для хранения. Хотя они также являются жесткими дисками USB, они потребляют больше энергии и требуют внешних блоков питания.

Некоторые настольные устройства хранения имеют несколько жестких дисков.Обычно это подключенные к сети устройства хранения данных, используемые в качестве файловых серверов. Беспроводные накопители представляют собой портативные жесткие диски со встроенным Wi-Fi. Помимо компьютеров, они также подключаются к смартфонам и планшетам. Они предлагают удобство быстрой беспроводной передачи файлов.

Что такое внешние твердотельные накопители?

Это портативные накопители, в которых для хранения файлов используются твердотельные накопители (SDD). SSD быстрее, чем HDD. Поскольку у них нет движущихся частей, они работают бесшумно и являются более энергоэффективными.Внешние твердотельные накопители меньше и надежнее внешних жестких дисков.

Покупка внешних дисков

Особенности, о которых следует подумать при покупке, включают скорость привода, емкость и интерфейс. Бытовые жесткие диски имеют две скорости вращения: 5400 или 7200 оборотов в минуту (об / мин). Модели с пластинами 7200 об / мин быстрее, но потребляют больше энергии от главных компьютеров. Если вам нужен портативный диск для резервного копирования важных файлов, выберите диск с объемом памяти менее 1 ТБ. Портативные и настольные устройства емкостью до 4 ТБ подходят для резервного копирования системы.Для медиа-серверов и игровых компьютеров рассмотрите модели с объемом памяти 6 ТБ или более.

USB — это наиболее распространенный интерфейс подключения, используемый внешними жесткими дисками и твердотельными накопителями. Ищите устройство с портом USB 3.0 или новее. Это в 10 раз быстрее, чем USB 2.0. Порт USB 3.1 в два раза быстрее, чем USB 3.0. Внешние жесткие диски для настольных ПК также могут иметь порты eSATA, FireWire и Thunderbolt. Самый быстрый из них — Thunderbolt. Порты Thunderbolt 3 в два-четыре раза быстрее портов USB 3.1 и используют разъемы USB-C.

Преобразование внутренних жестких дисков в внешние жесткие диски

Чтобы использовать внутренние жесткие диски в качестве внешних накопителей, вам потребуются совместимые корпуса и док-станции для жестких дисков. Существуют разные корпуса для 2,5- и 3,5-дюймовых дисков. Помимо защиты внутренних жестких дисков, корпуса и док-станции также имеют порты подключения и кабели. Выберите корпус с несколькими отсеками для жестких дисков, чтобы использовать диск RAID в качестве файлового сервера.

Убедитесь, что вы никогда не потеряете важные файлы, регулярно создавая резервные копии своих компьютеров на внешних жестких дисках.На сайте B&H Photo and Video вы найдете широкий выбор этих компьютерных запоминающих устройств, а также аксессуаров для внешних жестких дисков.